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Molecular commonalities across microorganisms

METABOLIC PATHWAYS

v’ Conserved biochemistry and molecular biology
v’ Biosynthesis machinery
v Energy conservation and central metabolism
v’ Conserved principles of enzyme kinetics



Environment

All microorganisms have a finite biosynthetic capacity

such that the synthesis of one protein is that the expense of others
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Unneeded proteins are at the expense of growth proteins in E. coli
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Identical fitness measure for all microorganisms
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Protein expression of H-ATPase maximizes growth rate in E. coli

for S. cerevisiae evidence see Keren, et al. Cell, 2016 and for L. lactis evidence see Peter Jensen’s papers
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The trade off between growth, stress readiness and adaptation capacity
implied by the finite biosynthetic resources
Slower growth of Escherichia coli leads to longer

survival in carbon starvation due to a decrease in
the maintenance rate
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The trade off between growth, stress readiness and adaptation capacity

implied by finite biosynthetic resources

Anticipation

Growth Relative
and | protein
metabolism | investment



Molecular “hardwiring” of the trade off in E. coli via RNA-pol competition

o-factors are required, transient subunits of RNA polymerase in E. coli

o-competition for RNA polymerase
(Affinity and abundance-based)
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In lab-evolution experiments, growth-vs-stress “rebalancing” mutations were found in sigma factors and RNA pol.



Commonality of overflow metabolism at fast growth
for L. lactis example see Goel et al. Molecular Microbiology 2015
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Optimal allocation of biosynthetic resources can explain overflow
metabolism at fast growth

Elsemman, Prado, Griagatis et al, BioRxiv preprint, 2021.
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Growth rate is an “order parameter” for E. coli

(and likely also for S. cerevisiae)
Adaptive

Prioritising growth

0? Preparatory protein expression

‘07 [growth-unrelated sigma factors]

Catabolite repression

ANTICIPATION

[PPGpp]

Overflow metabolism

Respiration

Cytosolic constraint

CONSTRAINTS METABOLISM

Membrane constraint

Growth rate

‘ [ribosome]

Nutrient excess




But not all microorganisms are like E. coli and S. cerevisiae

... Possible differences
Commonalities

v’ Protein expression as function of growth rate
v Absence of overflow metabolism

v' Unneeded protein response of growth rate
v’ Anticipation behavior at slow growth

v’ Biochemical kinetics

v’ Biosynthesis

v" Finite biosynthetic resources
v’ Fitness measure

Likely cause:

differences in their environment (niches)

The field is biased to fast growing microbes in constant
conditions.



Mostly (same) feast environment
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Microbial fitness strategies are likely niche dependent
Microbial fitness strategy = Microbial physiology

Growers,
Poor adaptors to new conditions,
e.g. 7?7 Lactococcus lactis, Methanococcus maripaludis

Growers first,

Reasonable adaptors

Future preparation whenever possible

e.g. Escherichia coli, Saccharomyces cerevisiae

Growers and storers during the day,
Survive during the night

Future preparation whenever you can
e.g. Synechococcus elongatus

Survivors

Future preparers
Good adaptors

€.g. many soil bacteria



Conclusions

Commonalities exist across microorganisms.

1 Microbes are nearly identical in their basic metabolism, biosynthesis and biochemistry.
J Natural selection selects microbes with the highest average growth rate.

1 All microbes suffer from finite biosynthetic resources.

1 Expression of proteins is at the expense of others (the growth-stress-adapt trade-off).
Niche-specific physiological phenomena.

1 Unneeded protein reduces growth rate.

 Optimal expression of a needed protein maximizes growth rate.

[ Overflow metabolism can result from optimal allocation of finite biosynthetic resources.
1 E. coli (and S. cerevisiae?) are opportunistic and prioritize growth over future preparation.
The physiology (metabolic and stress protein expression) of E. coli and S. cerevisiae can

be predicted by optimal allocation of finite biosynthetic resources to maximize growth rate.
The physiology of model microorganisms likely still reflects their natural niches such that

E. coli, S. cerevisiae, B. subtilis, and S. elongatus (and L. lactis) experience the same
protein-expression constraints, but nonetheless behave differently.



Thanks to .....

The Systems Biology lab
Bas Teusink

Douwe Molenaar
Herwig Bachman

Johan van Heerden
Iraes Rabbers

Daan de Groot

Meike Wortel

Age Tjalma

Sieze Douwenga

Eunice van Pelt-Klein Jan
Rinke van Tatenhove-Pel

Collaborators
Bob Planqué, Joost Hulshof, Ralf Steuer, Aljosha Wahl, Martin Lerchner



